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* Quiz five results and comments

* New topic: how to compute h
Larry Caretto  Basic heat transfer coefficient
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+ Analytical equations
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Quiz Five Grades Quiz Five Comments

22 Students » Highest quiz average | have ever seen!
» 25 Maximum possible  Minor problems

* Mean (average) = 20.1 — Convert ¢, from kJ/kg=°C to J/kg=°C
* Standard deviation = 3.78 — Note that V/A used in lumped parameter
* Median = 21 Biot modulus is not same as length used in
* Grade distribution calculations with charts
13 15 15 15 16 16 18 — Compute o = k/pcp
19 20 20 21 21 21 21 22 — Chart solution is more accurate because Bi
23 24 24 24 25 25 25 is too large to use lumped parameter
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Review Convection Basics Review Convection Basics |l
This example is an ~ Velocity hure 152 Voo = reference Velocity fioue 152
external flow (flow  variation __ Ve T Heatand velocity variation __ Vo T Heatand
over an object) Of air o Mass Transfer Of air o Mass Transfer
with velocity T T, = reference 14 T
. temperature

relative to the ) Temperature ) Temperature
object fi\lr variation A = surface area ffm variation
The reference b of air T, = surface i of air
velocity, Voo, and temperature
temperature Too . R i
are called the free- Qeony v, IT —_tvarl?jble Qeonv
stream values (far Ay T :’e octty ?n Ag T
from the object) / s emperature / s
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Northridge Hot Block Northridge ‘ Hot Block
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Review Convection Basics

f Vclocity Figure 1-32
Qeonv = NA(Ts —Tw)| variation _ Voo from Gengel,
of air Tx Mass Transfer

h = heat transfer r
coefficient ) Temperature
(W/m2K) or Air variation
Btu/hr-ft2-oF flow of air
h is found from
empirical or Q
theoretical A conv
equation / o T,
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Northridge ‘ Hot Block

* QCO"W = hAsurface(Tsurface - Tfluid) is heat
transfer from surface to fluid

¢ Qconv= hAsurface(Tquid - Tsurface) is heat
transfer from fluid to surface

* Physical heat transfer is opposite to
assumed direction if Qg is negative

* Find h values from fluid and flow
properties using empirical and
theoretical results
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— 2,
H%E 4 7 _Mechanism

* Free convection
has no imposed

Wamer air )
AR 6, rsing flow field
NPy l ! . +».~ * Forced convection
st N oes
(b) Free convection — may come from

motion of body

. No convection

AR Jieunens  » Conduction only if
no fluid motion

. Figure 6-1 from Cengel, Heat and Mass Transfer
() Conduction 9 Ceng

Flow Properties

» Moving fluid velocity components in x, vy,
and z directions are u, v, and w

* Fluids have shear stress, t, that is
proportional to velocity gradient and a
property called the viscosity, u

» For a simple flow in the x and y direction

_[ou  ov ou « Typically ov/ox is
T= M —t— ([ Uu— .
dy Ox oy  negligible

Califieni Seate University
Nort]]ridge Figure 6-4 from Cengel, Heat and Mass Transfer

Viscosity Dimensions

« Dimensions of shear stress, 1, are force
divided by area or MLT-?/L2 = ML'T-2

» Dimensions of velocity gradient ou/dy are
L/T divided by T or T

* Viscosity: pu =t/ (0u/dy)

 Dimensions of p: = ML-'T2/ T-' = ML-'T-
= FTL (F = force dimensions = MLT-?)

« Units for viscosity are kg/m-s = N-s/m? or
Ibys/ft> = 32.174 b, /fts

x'_.rhfm- i1 State Liniversit 11
Northridge

Dynamic and Kinematic

ME 375 — Heat Transfer

* Viscosity, u, defined previously is called
the “dynamic” viscosity

* Define v = p/p, a common combination
of properties, as “kinematic” viscosity

 Dimensions of v are (ML-'T-1) / (ML-3) =
L2/T (same as those of o = k/pc,)

« Typical units are m?/s or ft?/s

» Can find v in some property tables
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=" velocity
v [ . . - ycurve
I at 1.J.'|.L (times
T u /__—surface viscosity)

e
I

Plate “No slip” (u = 0) wall
b e
California Sese Lniyensity boundary condition
Nort]lridge Figure 6-4 from Cengel, Heat and Mass Transfer

Effect of Viscosity
Unit Relative
niform velocities
approach of fluid lavers T= a_u
velocity, V ’ H oy
| Zero S'°PeC’f
. | L uversus

is shear
stress

13

Analysis at Walls

+ At u = 0 wall heat transfer is all by
conduction so: §,,; = —kKgiq(6T/0Y)

— This is basis for theoretical and
computational analyses of convection

wall

- Have local, h,, and average, h,,,, values
1 L
Nayg =N :Ejhxdx
0

» Wall shear stress: t,,,, = n(ou/oy),a
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Flow Classifications

» Forced versus free

around aircraft)

» Laminar versus turbulent

Califieni Seate University
Northridge

* Internal (as in pipes) versus external (as

— Entry regions in pipes vs. fully-developed
» Unsteady (changing with time) versus
unsteady (not changing with time)

» Compressible versus incompressible
* Inviscid flow regions (u not important)
* One-, two- or three-dimensional

Turbulent

flow

Laminar

|

J
-

\—v_/\ﬂ_l

Transitional
- —
e N

|

Figures 6-9 and 6-16. Cengel, Heat Turbulent

and Mass Transfer

Laminar and Turbulent Flows

remain in smooth contact

transition to turbulent
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* In laminar flows adjacent fluid layers

* Turbulent flow (much more common) is
characterized by fluctuations in the flow

« Some flows can start as laminar then

» Determination of laminar or turbulent
flows is based on Reynolds number
(forced) and Grashof number (free)

ME 375 — Heat Transfer

Compressible Flows

* An incompressible flow may or may not
be a constant density flow
— In fluid mechanics an incompressible flow
is one in which the changes in pressure do
not significantly affect the density
» Flows with large density changes due to
temperature may be incompressible flows
* Incompressible flows have Mach
numbers, Ma =V / a, less than 0.3 (a =
sound speed)
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Inviscid Flow Regions

Inviscid flow
S-LUN - No flow is

truly inviscid,
LS (= 0) but
G EIEFINN regions of the
flow may
Im"iscif] flow have 6u/6y ~
i 0sot~0

Boundary Layer

Laminar boundary | Transition I Turbulent boundary __|
layer region layer
v
y ——
~ P .
i " gy e
~ } Lo
v A AN LY
— == 4~y } \ = .
= - \ R e |
- - - = —rh o o _.

7
Boundary layer thickness, 5

* Region near wall with sharp gradients
— Thickness, 3, usually very thin compared to
overall dimension in y direction

California Seate University 2
NOI‘thl’ldge Figure 6-12 from Cengel, Heat and Mass Transfer

Boundary Layer

Turbulent boundary

layer

U,, = velocity before
v plate = velocity very
— far from plate

g J ) ™ | Turbulent U->U, asy— o

layer

~— Overlap layer
~— Buffer layer

L e

1
Viscous sublayer

!
Boundary layer thickness, &

» Boundary layer thickness, 8, defined as
distance to point where velocity = 0.99U

Callifiorni Stase Univensity 21
Nort]]ﬂdge Figure 6-12 from Cengel, Heat and Mass Transfer

Thermal Boundary Layer

» Thin region near
solid surface in [z Feewen %
which most of —
temperature '
change occurs

» Thermal boundary layer thickness may
be less than, greater than or equal to
that of the momentum boundary layer

Figure 6-15. Cengel, Heat and Mass Transfer 22
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Dimensionless Parameters

» Recall transient conduction analyses
— Used Fourier number, t, = at/L 2, Biot
number, Bi = hL/k, and dimensionless
distance x/L or r/R
* L. is characteristic length, L, R, D, etc.
* Found these by analysis of differential
equation for conduction
+ Allowed effect of several variables to be
expressed in terms of a smaller number
of dimensionless parameters

Califoenis Seate Universit
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Dimensionless Convection

* Nusselt number, Nu = hL /Kgq
— Different from Bi = hL /kgiq
* Reynolds number, Re = pVL/u = VL /v
* Prandtl number Pr = uc /k (in tables)
« Grashof number, Gr = BgAT/v?

—g = gravity, B = expansion coefficient =
~(1/p)(@plaT),, and AT = [ Tygy = T, |

» Peclet, Pe = RePr; Rayleigh, Ra = GrPe

Califoenis Seate Universit
Northridge “
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+ Can use length as a subscript on
dimensionless numbers to show correct
length to use in a problem
—Rep = pVD/y, Re, = pVx/p, Re, = pVL/n
—Nup = hD/k, Nu, = hx/k, Nu, = hL/k
— Grp = p?BgATD3/2, Gr, = p2BgATX3/p2,

Gr, = p?BgATL3/p?
» Use not necessary if meaning is clear

t'_.r||!'|:|' a1 Seate University 25
Northridge

Dimensionless Example

 Heat transfer for turbulent flow in
smooth tubes is given by the equation
Nup = 0.023 Re8Pr" where n = 0.4 for
heating and 0.3 for cooling

» Compute h for water if T, ,, = 80°C, Tyq
=40°C,D=0.1m,andV=3m/s
— Evaluate properties at mean (“film”)

temperature of 60°C

— Use Table A-9, page 854, for properties

t'_.r||!'|:|' a1 Seate University 2
Northridge

Dimensionless Example |l

* Nup = 0.023 Re28Pro4 (heating
because T,,, = 80°C and T4 = 40°C),
D=0.1m,andV=3m/s

» At mean temperature of 60°C,
p = 983.3 kg/m3, k = 0.654 W/m-K,
u =4.67x10* kg/m-s, Pr=2.99
983.3kg 3m

2=(0.1m)
2 (
Re=PP__m s . = 6.32x10°
m 4.67x10™* kg
m-s 27
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Dimensionless Example lli

* Nup =0.023 Rep28Pr4, D = 0.1 m,
V =3 m/s, p =983.3 kg/m3,
k =0.654 W/m-K, u = 4.67x104, kg/m's,
Pr=2.99, Rep = 6.32x10°

.8
Nup = 0.023Rel® Pr®4 = 0.023(6.32x105)O (2.99)4 =155

0.654W(
_KNup _ m-K —1.02x10% -V
D 0.1m m - K

1557)
h
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Governing Equations

* Fluid mechanics involves non-linear
partial-differential equations

+ Analytical solutions available only for
simplest geometries

» Computational fluid dynamics is used to
solve problems in convective heat
transfer for complex geometries

+ Text derives differential equations for
simple case of boundary layers
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2D Boundary Layer Equations

- Continuity (mass u_ov_

—=0
conservation) oX oy
« Momentum ou ou_o*u OP
: pU—+pV—=—>——
conservation oX oy 8y2 X
2 2
* Energy . c uﬁ_’,vﬂ :k ﬂ_}.ﬂ
conservation = P\ " ox oy x> oy’

» Steady, constant property, negligible
dissipation of shear stress
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» Can convert boundary-layer equations
into dimensionless forms as with
unsteady heat conduction

+ Define dimensionless quantities: & =
XL, n =y, v =u/U_, Vv =v/U_,P =
PipU2, and® = (T-T)/(T,-T,)

 Substitute into equations on previous
chart and carry out algebra to get
results on next chart
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Dimensionless Forms Il
« Continuity o v _,
o onm
ou ou 1 o*u oP
+V—=— -
o on Re 6n2 o

00 00 1 (o0 &%0
* Energy |U—+V—|= —t—
Ba on) RePr| e on?

+ Momentum U'

1
Nu = —(6—@} = f(Re,Pr,&) Nu=-— f (5—@] dé = f(Re,Pr)
on n=0 0 o n=0
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Dimensionless Forms llI

* The local Nusselt number, Nu, = hL/k
depends on Re, Pr, and x/L,

* The average Nusselt number, Nu,,, =
h,vLc/k depends on Re and Pr

» These relations, valid for the simple 2D
case suggest correlations for empirical
data
— Expect h = f(Re, Pr) for forced

average -
convection
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Skin Friction Coefficient, c;

 Dimensionless shear stress 1" = t/pU,_ 2
* Wall (y = 0) shear stress = p(ou/dy),-o

o mog 2w _ 2 [@J: 2 “[a(u'um)j
b0z puZlay) pu Ak )

Local _2711(&1'} 2 (GU'J = f(Re, &)
n=0 n=0

“Re

Similarity

» For convection, the momentum and
energy equations have similar forms

» Wall shear and heat transfer also have
similar equations ¢
— Wall shear stress, t,, = p(0u/dy),-q
— Wall heat transfer, ., = k(6T/0y),-o

» We will find relations between the two in
computations of h values
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pU,Lc(n on
x=L =1
1
Average  Cf = J'cfxdx: jcfxd§= f (Re)
Callfornis State Lniversity x=0 &=0
Northridge .
Conclusions

» Theoretical equations for heat transfer
coefficient are limited to very simple
situations

» Dimensional analysis shows that h is
related to flow properties through
dimensionless variables
—Nu = f(Re, Pr) for forced convection
— Nu - f(Gr, Pr) for free (natural) convection

» Computations for h rely on equations
between these dimensionless variables
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