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Outline
• Quiz five results and comments
• New topic:  how to compute h
• Basic heat transfer coefficient
• Use of dimensionless parameters
• Classification of flows
• Flow properties
• Boundary layer
• Analytical equations
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Quiz Five Grades
• 22 Students
• 25 Maximum possible
• Mean (average) = 20.1
• Standard deviation = 3.78
• Median = 21
• Grade distribution

13 15 15 15 16 16 18

19 20 20 21 21 21 21 22

23 24 24 24 25 25 25
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Quiz Five Comments
• Highest quiz average I have ever seen!
• Minor problems

– Convert cp from kJ/kg▪oC to J/kg▪oC
– Note that V/A used in lumped parameter 

Biot modulus is not same as length used in 
calculations with charts

– Compute α = k/ρcp

– Chart solution is more accurate because Bi 
is too large to use lumped parameter
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Review Convection Basics
This example is an 
external flow (flow 
over an object) 
with velocity 
relative to the 
object

The reference 
velocity, V∞, and 
temperature T∞
are called the free-
stream values (far 
from the object)

V∞
Figure 1-32 
from Çengel, 
Heat and 
Mass Transfer
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Review Convection Basics II
V∞ = reference 
velocity

T∞ = reference 
temperature

As = surface area

Ts = surface 
temperature

V, T = variable 
velocity and 
temperature

V∞
Figure 1-32 
from Çengel, 
Heat and 
Mass Transfer
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Review Convection Basics III

h = heat transfer 
coefficient 
(W/m2·K) or 
Btu/hr·ft2·oF

h is found from 
empirical or 
theoretical 
equation

V∞
Figure 1-32 
from Çengel, 
Heat and 
Mass Transfer
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Review Convection Basics
• = hAsurface(Tsurface – Tfluid) is heat 

transfer from surface to fluid
• = hAsurface(Tfluid – Tsurface) is heat 

transfer from fluid to surface
• Physical heat transfer is opposite to 

assumed direction if          is negative
• Find h values from fluid and flow 

properties using empirical and 
theoretical results

convQ&

convQ&

convQ&
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Mechanism
• Free convection 

has no imposed 
flow field

• Forced convection 
does 
– may come from 

motion of body
• Conduction only if 

no fluid motion
Figure 6-1 from Çengel, Heat and Mass Transfer 10

Flow Properties
• Moving fluid velocity components in x, y, 

and z directions are u, v, and w
• Fluids have shear stress, τ, that is 

proportional to velocity gradient and a 
property called the viscosity, μ

• For a simple flow in the x and y direction

Figure 6-4 from Çengel, Heat and Mass Transfer
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μ=τ • Typically ∂v/∂x is 
negligible
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Viscosity Dimensions
• Dimensions of shear stress, τ, are force 

divided by area or MLT-2/L2 = ML-1T-2

• Dimensions of velocity gradient ∂u/∂y are 
L/T divided by T or T-1

• Viscosity: μ = τ / (∂u/∂y)
• Dimensions of μ: = ML-1T-2 / T-1 = ML-1T-1

= FTL-2 (F = force dimensions = MLT-2)
• Units for viscosity are kg/m·s = N·s/m2 or 

lbf·s/ft2 = 32.174 lbm/ft·s
12

Dynamic and Kinematic
• Viscosity, μ, defined previously is called 

the “dynamic” viscosity
• Define ν = μ/ρ, a common combination 

of properties, as “kinematic” viscosity
• Dimensions of ν are (ML-1T-1) / (ML-3) = 

L2/T (same as those of α = k/ρcp)
• Typical units are m2/s or ft2/s
• Can find ν in some property tables
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Effect of Viscosity

Figure 6-4 from Çengel, Heat and Mass Transfer

“No slip” (u = 0) wall 
boundary condition
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Slope of 
u versus 
y curve 
(times 
viscosity) 
is shear 
stress
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Analysis at Walls
• At u = 0 wall heat transfer is all by 

conduction so:   wall = –kfluid(∂T/∂y)wall
– This is basis for theoretical and 

computational analyses of convection
– Have local, hx, and average, havg, values

• Wall shear stress: τwall = μ(∂u/∂y)wall
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Flow Classifications
• Forced versus free
• Internal (as in pipes) versus external (as 

around aircraft)
– Entry regions in pipes vs. fully-developed

• Unsteady (changing with time) versus 
unsteady (not changing with time)

• Laminar versus turbulent
• Compressible versus incompressible
• Inviscid flow regions (μ not important)
• One-, two- or three-dimensional
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Flows
• Laminar 

flow is 
layered, 
turbulent 
flows are 
not (but 
have some 
structure)

Figures 6-9 and 6-16.  Çengel, Heat 
and Mass Transfer
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Laminar and Turbulent Flows
• In laminar flows adjacent fluid layers 

remain in smooth contact
• Turbulent flow (much more common) is 

characterized by fluctuations in the flow
• Some flows can start as laminar then 

transition to turbulent
• Determination of laminar or turbulent 

flows is based on Reynolds number 
(forced) and Grashof number (free)
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Compressible Flows
• An incompressible flow may or may not 

be a constant density flow
– In fluid mechanics an incompressible flow 

is one in which the changes in pressure do 
not significantly affect the density

• Flows with large density changes due to 
temperature may be incompressible flows

• Incompressible flows have Mach 
numbers, Ma = V / a, less than 0.3 (a = 
sound speed)
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Inviscid Flow Regions

• No flow is 
truly inviscid, 
(μ = 0) but 
regions of the 
flow may 
have ∂u/∂y ≈
0 so τ ≈ 0

Figure 6-7 from Çengel, Heat and Mass Transfer
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Boundary Layer

• Region near wall with sharp gradients
– Thickness, δ, usually very thin compared to 

overall dimension in y direction
Figure 6-12 from Çengel, Heat and Mass Transfer
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Boundary Layer

• Boundary layer thickness, δ, defined as 
distance to point where velocity = 0.99U∞

Figure 6-12 from Çengel, Heat and Mass Transfer

U∞ = velocity before 
plate = velocity very 
far from plate

U → U∞ as y → ∞
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Thermal Boundary Layer
• Thin region near 

solid surface in 
which most of 
temperature 
change occurs

• Thermal boundary layer thickness may 
be less than, greater than or equal to 
that of the momentum boundary layer

Figure 6-15.  Çengel, Heat and Mass Transfer
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Dimensionless Parameters
• Recall transient conduction analyses

– Used Fourier number, τ, = αt/Lc
2,  Biot

number, Bi = hLc/k, and dimensionless 
distance x/L or r/R

• Lc is characteristic length, L, R, D, etc.

• Found these by analysis of differential 
equation for conduction

• Allowed effect of several variables to be 
expressed in terms of a smaller number 
of dimensionless parameters
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Dimensionless Convection
• Nusselt number, Nu = hLc/kfluid

– Different from Bi = hLc/ksolid

• Reynolds number, Re = ρVLc/μ = VLc/ν
• Prandtl number Pr = μcp/k (in tables)
• Grashof number, Gr = βgΔT/ν2

– g = gravity, β = expansion coefficient =     
–(1/ρ)(∂ρ/∂T)p, and ΔT = | Twall – T∞ |

• Peclet, Pe = RePr; Rayleigh, Ra = GrPe
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Characteristic Length
• Can use length as a subscript on 

dimensionless numbers to show correct 
length to use in a problem
– ReD = ρVD/μ, Rex = ρVx/μ, ReL = ρVL/μ
– NuD = hD/k, Nux = hx/k, NuL = hL/k
– GrD = ρ2βgΔTD3/μ2, Grx = ρ2βgΔTx3/μ2,   

GrL = ρ2βgΔTL3/μ2

• Use not necessary if meaning is clear

26

Dimensionless Example
• Heat transfer for turbulent flow in 

smooth tubes is given by the equation 
NuD = 0.023 ReD

0.8Prn where n = 0.4 for 
heating and 0.3 for cooling

• Compute h for water if Twall = 80oC, Tfluid
= 40oC, D = 0.1 m, and V = 3 m/s
– Evaluate properties at mean (“film”) 

temperature of 60oC
– Use Table A-9, page 854, for properties
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Dimensionless Example II
• NuD = 0.023 ReD

0.8Pr0.4 (heating 
because Twall = 80oC and Tfluid = 40oC), 
D = 0.1 m, and V = 3 m/s

• At mean temperature of 60oC,               
ρ = 983.3 kg/m3,          k = 0.654 W/m·K,        
μ = 4.67x10-4 kg/m·s,  Pr = 2.99
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Dimensionless Example III
• NuD = 0.023 ReD

0.8Pr0.4, D = 0.1 m,       
V = 3 m/s, ρ = 983.3 kg/m3,                   
k = 0.654 W/m·K, μ = 4.67x10-4, kg/m·s, 
Pr = 2.99, ReD = 6.32x105
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Governing Equations
• Fluid mechanics involves non-linear 

partial-differential equations
• Analytical solutions available only for 

simplest geometries
• Computational fluid dynamics is used to 

solve problems in convective heat 
transfer for complex geometries

• Text derives differential equations for 
simple case of boundary layers

30

2D Boundary Layer Equations
• Continuity (mass 

conservation) 
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• Steady, constant property, negligible 
dissipation of shear stress
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Dimensionless Forms
• Can convert boundary-layer equations 

into dimensionless forms as with 
unsteady heat conduction

• Define dimensionless quantities: ξ = 
x/Lc, η = y/Lc, u’ = u/U∞, v’ = v/U∞, P’ = 
P/ρU∞

2, and Θ = (T – T∞)/(Ts – T∞)
• Substitute into equations on previous 

chart and carry out algebra to get 
results on next chart
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Dimensionless Forms II
• Continuity 0''
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Dimensionless Forms III
• The local Nusselt number, Nux = hLc/k

depends on Re, Pr, and x/Lc

• The average Nusselt number, Nuavg = 
havgLc/k depends on Re and Pr

• These relations, valid for the simple 2D 
case suggest correlations for empirical 
data
– Expect haverage = f(Re, Pr) for forced 

convection
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Skin Friction Coefficient, cf

• Dimensionless shear stress τ’ = τ/ρU∞
2

• Wall (y = 0) shear stress = μ(∂u/∂y)y=0
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Similarity
• For convection, the momentum and 

energy equations have similar forms
• Wall shear and heat transfer also have 

similar equations
– Wall shear stress, τw = μ(∂u/∂y)y=0

– Wall heat transfer,  wall = k(∂T/∂y)y=0

• We will find relations between the two in 
computations of h values

q&
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Conclusions
• Theoretical equations for heat transfer 

coefficient are limited to very simple 
situations

• Dimensional analysis shows that h is 
related to flow properties through 
dimensionless variables
– Nu = f(Re, Pr) for forced convection
– Nu – f(Gr, Pr) for free (natural) convection

• Computations for h rely on equations 
between these dimensionless variables


